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1 Convex Dual of the Cumulant Generating Function and
Sanov’s Theorem

1.1 The cumulant generating function and convex duality

Suppose X ∈ Rd is a random variable.

Definition 1.1. The map θ 7→ E[eθ
>X ] with θ ∈ Rd is called the moment generating

function.

Definition 1.2. The map θ 7→ logE[eθ
>X ] with θ ∈ Rd is called the cumulant generating

function.

If we differentiate the moment generating function with respect to θ and set θ = 0, we
get the moments of X. Likewise, doing the same to the cumulant generating function gives
us the cumulants of X. One advantage of working with the cumulant generating function
is that it is convex.

We have dealt with finite (and countable) random variables and some densities. For a
finite random variable X ∈ X with |X | = d,it is interesting to consider Z ∈ Rd where
Z = ei with probability pi (here, ei is the i-th basis vector). Then

logE[eθ
>Z ] = log

d∑
i=1

pie
θi

because θ>ei = θi for i = 1, . . . , d.
To any (extended real-valued) convex function there is a dual1 convex function on Rd.

Example 1.1. Let d = 1 and consider f(x) = x2/2. Consider a line ax of slope ax and
look at the height that separates the line from the function. Find the point at which this

1This is somtimes called Fenchel duality, Legendre duality, or Fenchel-Legendre duality.
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height is the greatest to calculate the dual f̂(a) := supx∈R ax− f(x).

Here, we can calculate f̂(a) = a2/2. In a related sense to how the Gaussian is self-dual for
the Fourier transform, this function is self-dual for the Frenchel-Legendre transform.

Example 1.2. Let f(x) = ex. To find f̂(a), since f ′(x) = a for x, if a > 0, this occurs if
x = ln a, and if a ≤, this is impossible. So we get

f̂(a) = sup
x

(ax− ex)

=


a ln a− a a > 0

0 a = 0

∞ a < 0.

What if d > 1?

Definition 1.3. Suppose Φ : Rd 7→ R ∪ {∞} is convex. Its Fenchel-Lengendre dual is

Φ̂(a) := sup
x∈Rd

a>x− Φ(x)

for a ∈ Rd.

Again,
Φ̂(a) = a>xa − Φ(xa),

where xa is defined by ∇Φ(xa) = a (if xa exists). It can be shown that

Φ(x) = sup
a
x>a− Φ̂(a).

To check this where Φ expresses all derivatives, write

Φ(x) ≥ x>a− Φ̂(a) ∀x, a ⇐⇒ Φ̂(a) ≥ a>x− Φ(x) ∀x, a.
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Proposition 1.1. Let X take values in X with |X | = d and pi = P(X = i). Let Z = ei
iff X = i (i.e. P (Z = ei) = pi for 1 ≤ i ≤ d). Then the Fenchel dual of Φ(θ) = lnE[eθ

>Z ]
is

Φ̂(a) =

{
D(a || p) if a is a probability distribution

∞ otherwise.

Proof. Here,

ΦZ(θ) = ln
d∑
i=1

pie
θi ,

so

∇ΦZ(θ) =

 p1eθ1∑d
i=1 pie

θi

...

 .
This expresses only gradients that are probability distributions (means where pi 6= 0). We
have

Φ̂X(a) = a>pa − ln
d∑
i=1

pie
θai ,

where θa is defined in terms of a via ∇Φ(θa) = a, i.e. pie
θi is proportional to ai (i.e.

θi = ln ai
pi

+ constant). The constant is log
∑d

i=1 pie
(θa)i = 0.

=
d∑
i=1

ai ln
ai
pi
−
��

�
��

�
��
�*0

ln

(
d∑
i=1

pie
ln
ai
pi

)
= D(a || p).

1.2 Large deviations and Sanov’s theorem

Roughly speaking, a basic large deviations theory result is of the form: If Z1, Z2, . . . are
iid Rd-valued with logE[eθ

>Z ] denoted ΦZ(θ) and E[Z1] = 0 ∈ Rd, then for any open set
A ⊆ Rd,

lim inf
n→∞

− 1

n
logP

(
Z1 + · · ·+ Zn

n
∈ A

)
≤ inf

z∈A
Φ̂Z(z).

Here is a special case.
If X1, X2, . . . , are i.i.d. X -valued with X = {1, 2, . . . , d} and Z1, Z2, . . . are i.i.d. Rd-

valued creased from X1, X2, . . . , then observe that Z1+···+Zn
n is equivalent to the empirical

distribution of (X1, . . . , Xn), i.e. Z1+···+Zn
n =

∑d
i=1

N(i|xn)
n ei. Let Pxn := (N(i|xn)

n , i =
1, . . . , d). So for any open subset A ⊆ simplex in Rd,

lim inf
n
− 1

n
logP(PXn ∈ A) ≤ inf

a∈A
D(a || p).
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Recall that if xn = (x1, . . . , xn) ∈ X n with X finite and if P denotes the set of

probability distributions on X, then pxn ∈ P denotes (N(x|xn)
n , x ∈ X ) and Pn denotes

the set of all such Pxn . For an n-type P ∈ Pn, the typicality set for P refers to
T (P ) := {xn ∈X n : Pxn = P}. For Q ∈ P,

Q(xn) =

n∏
i=1

q(xi)

=
∏
x∈X

q(x)N(x|xn)

= 2−n(H(Pxn )+D(Pxn ||Q)).

We also proved that for P ∈ Pn,

Pn(T (P )) ≥ Pn(T (P̃ )) ∀P̃ ∈ Pn,

|Pn| ≤ (n+ 1)|X |, and for P ∈ Pn,

1

(n+ 1)|X |
2nH(P ) ≤ |T (P )| ≤ 2nH(P ).

Theorem 1.1 (Sanov). Let X be finite, X1, X2, . . .
iid∼ Q, and E ⊆ P. Assume that E is

the closure of its interior. Then

lim
n→∞

1

n
logQn(PXn ∈ E) = −D(P ∗ || Q),

where
P ∗ = arg min

P∈E
D(P || Q).

Remark 1.1. Since E is closed and D(· || Q) is continuous, this argmin exists. P ∗ is
called the I-projection of Q onto E.

Proof. For the upper bound,

Qn(PXn ∈ E) = Qn(PXn ∈ E ∩ Pn)

≤ (n+ 1)|X |2−nD(P ∗||Q)

For the lower bound, for any P (n) ∈ Pn ∩ E,

Qn(PXn ∈ E) ≥ Qn(T (P (n)))

≥ 1

(n+ 1)|X |
2−nD(P (n)||Q).

Choose P (n) → P ∗.
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Here is a nice observation about the I-projection of Q onto a convex set E.

Proposition 1.2. For all P ∈ E,

D(P || Q) ≥ D(P || P ∗) +D(P ∗ || Q).

This tells us that we should think of D(P || Q) as the square of a distance.

Proof. Consider the relative entropy D(λP + (1−λ)P ∗ || Q) for λ ∈ [0, 1]. Differentiate in
λ. It must be nonnegative.
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